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CO2 emission targets

Current part-load optimization technologies

were sufficient to meet past requirements,

but can never fulfill future requirements

 Vehicle specific Energy Demand 

(based on vehicle inertia and driving resistances)

roundabout 0,12 - 0,18 kWh/km

 Engine specific Technology Year 2000:

Mainly N/A engines, vehicle 0,144 kWh/km

NEDC-averaged bsfc = 386 g/kWh 

 CO2 = 172 g/km

 Technology Year 2015: 

Down-sized, Down-Speeded and Part-Load optimized 

Engines with Start/Stop, vehicle 0,138 kWh/km 

NEDC-averaged bsfc = 295 g/kWh 

 CO2 = 126 g/km

 Target “2020” of 95 g/km will require an 

average bsfc of 222 g/kWh

 This requires better efficiency than most actual 

engine at optimum operation point!

 Not Reachable by part-load optimizations only
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Part-Load optimization

 Reduction of load-exchange losses comes to its boundaries

 All chances to optimize part-load efficiency have been explored within the last ~20 years

 New ideas need to be developed immediately to fulfil CO2 targets

 What is to do ?

 Optimization of be-opt area necessary

 Less part load operation fraction, 

but combustion engine

remains main drive with dynamic

response demands
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gofficient technology spectrum

 Part Load Optimization

 Reduction of Scavenging losses

 Downspeeding

 Dethrotteling by high EGR

 Dethrotteling by lean combustion

 Dethrotteling by Valvetrain

 Downsizing (Reduction of Displacement)

 Variable Compressor/Expander unit
5

 Thermodynamic Efficiency Improvement

 Increase of effective expansion ratio

 VCR

 Miller Cycle

 Water injection

 Twin AV

 Waste Heat Recovery

 Steam processes

 Classic exhaust steam processes

 Combined water/exhaust cycle 

 Steam direct injection

 Cold start/ Instationary optimization

 Reduced heat capacity
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Gasoline engine optimization
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Pushing a gasoline engine closer to Carnot

 Background/Reason for Technology development

 Increasing expansion

 Gain of Isochor/Isobar expansion triangle

 TwinAV / Miller

 Using lower corner in T-s-diagram

 Waste Heat Recovery

 Combination of Technologies
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Gasoline engine optimization - Background
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Pushing a gasoline engine closer to Carnot

Background/Reason for Technology development

 Base thermodynamic efficiency of gasoline engine

 Efficiency of equal pressure process with fixed e is

 Typical e is ~ 10.0 for TC engines

and typical k is ~ 1.28 for exhaust gas                  hideal = 47,5%
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Twin AV

 Expansion at turbine until upstream cat pressure

 Usage of ~60% of exhaust gas mass

  hincrease ~ 7%

 Same engine displacement

 At high rpm (>5000) benefit reduces to ~0

Gasoline engine optimization - Background
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Two approaches to use „lower triangle“ exergy

Miller Cycle

 Increasing of geometric expansion by ~30%

 egeo = ~13 ; eeff = ~10

  hincrease ~ 5%

 Drawback is more total displacement

 More relative friction, esp. at part-load

 Worse warm-up behaviour



Twin AV

Basic concept Twin AV principle
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 No wastegate – Exhaust gas which is not used for turbocharging is bypassed at separate exhaust valve

 No exhaust backpressure at this LP exhaust valve

 Turbocharger has its own HP exhaust valve

 Small turbine with high typical pressure ratio can be applied

Conventional Twin AV

Intake manifold Intake manifold

Wastegate
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Twin AV
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Control concept Twin AV principle

 Boost control is driven by relative movement between exhaust valves

 Just one additional camphaser necessary

Small overlap

High torque Part load

Big overlap



"unused"
expansion triangle

expansion from
combustion cycle

~30% of exhaust gas mass
directly to environment or low 
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~70% of gas mass
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Basic concept Twin AV principle

Load change work potential gain @ Twin AV

Cylinder pressure at conventional

TC engine concept  load exchange

work ~0bar at full load, mid rpm

Key facts:

 Almost no statical backpressure

 “lost” exhaust mass fraction can 

be compensated by smaller 

turbine (higher turbine pressure 

level)

 Thermodynamically increasing 

effective expansion ratio

 Always positive scavenging 

pressure ratio  low knock 

retard

 Efficiency gain up to 7%

 Increased exhaust gas 

temperatures at turbine

 Good combination with

 Integration exhaust 

manifold

 Water injection



Twin AV
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System Layout 

 Smaller Turbine than conventional layout recommended

 Less mass flow, higher backpressure

 Same or more power than „base“ layout without TwinAV

 Combination with VTG could gain additional Turbo-Compound

potential

Control concept Twin AV principle

 Different mechanical approaches for camphaser integration

 Combination with main intake and outlet phasing possible

3-way cam-phasing 0
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Steam Direct Injection
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Technology Overview: Steam Direct Injection

Motivation

 Waste heat (exhaust and coolant) contains ~50% of total fuel energy,

which is more than the crankshaft power (at best efficiency operation)

 In part-load operation this is even more

Difficulties

 Waste Heat Regeneration cycles based on ORC or Clausius Rankine cycles are very 

expensive, relatively inefficient

 Additional costs and mass very high for vehicle application

 Instationary behaviour very bad, power control depending on heat up profile, typical 

delay time a few minutes

Solution

 No additional expansion unit, usage of combustion engine itself

 Dynamic behavior coupled to engine, System pressure coupled to exhaust energy
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Concept

Combination of known processes in a single expansion 

machine is key
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STEAM CONDITIONING AND DIRECT INJECTION

 Exhaust heat exchanger generates high pressure steam 

 Steam pressure depends on waste heat energy, delayed heat up due to thermal inertia

 Steam injections depend on operating point, however it shows fast control characteristics

 Power increase and efficiency gain due to steam expansion and combustion process

 Reduction of peak temperatures and exhaust gas temperature increase component protection

Otto

Rankine

CondenserCatalyst Heat exchangerTurbineCombustion engine

Reservoir

Fill portControl valve Water separator

Pump

Compressor
Steam injectors

Air filter
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Steam Direct Injection
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 Generation of superheated steam based on exhaust energy recuperation 

 Steam Direct Injection at a window close to TDC

depending on operating point and actual cylinder pressure, steam pressure up to 20-100 bar

 In comparison to fluid water injection, low temperature drop (no evaporation)  increasing cyl. Pressure

 Increasing cylinder pressure due to increasing mass and by this IMEP increase of up to 15%

more possible for short term (instationary)
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Steam Direct Injection

Key facts

18

Key facts Steam direct injection

 Steam generation by Exhaust heat exchanger up 

to 20-100bar

 Steam Power available on demand

 No additional expansion device necessary,

steam injection into main engine

 Part-efficiency of bottom cycle up to 15..20%

 Maximum Power gain (for limited time) up to 10kW

 Additional positive influency to base engine

 Soot reduction by agglomeration and peak

combustion temperature reduction

 Component protection included due to lower

exhaust gas temperatures

Key facts Turbo Steamer

 Steam generation by Exhaust heat exchanger up 

to 5-50bar

 Continous steam power generation, independent 

from usage

 needs to be buffered

 Expansion device is turbine or cell expander,

efficiency strongly dependent on OP point

 Cycle efficiency including pinch-effect 10..12%

 Electrical power generation of max. 2kW
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Component design

Rapid heat up vs. sufficient steam delivery rate 
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HEAT EXCHANGER

Quelle : BMW - Betrieb eines Rankine-Prozesses zur Abgaswärmenutzung im PKW

Technical Design

Max. static pressure @ Mass 

flux (exhaust)

Max. Backpressure @ Mass flux 

(exhaust)

1330mbar @ 835 kg/h

230mbar @ 835 kg/h

Alpha on the exhaust side 10-120 [W/m²K]

Alpha on the working fluid side 2.000-10.000 [W/m²K]

Pipe Diameter (Inside/Outside) 8/12 mm

Nominal / Max. Pressure 100/120 bar

Material X5CrNi18-10 (V2A)

Length/Width/Height 400/320/120 mm 

(15.4 L)

Interior pipe volume 1.15 L

Max. Steam delivery rate 30 g/s

Outlet working 

fluid

Inlet working fluid

Inlet 

exhaust gas

Outlet

exhaust gas

Housing

Pipe bundles

Cooling fins

Isolation
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Component design

Sufficent Full-load with acceptable Part-load performance 

trade-off
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INJECTOR

Max. rel. steam mass at Damax= 80°KW
at operation with 100bar/311°C saturated steam 
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Simulation results

Taking full advantage of early steam injections is key to high 

efficiency
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PART LOAD PERFORMANCE - 2000RPM 11BAR – 100BAR INJECTION

 Low rotational speed allows for short 

injection timing (15°CA)

 Load point stability enables pre pmax

injections leading to higher efficiency

 Combustion peak temperature can 

be lowered significantly by 350 K 

 Decreased exhaust temperature 

beneficial for component protection 

 Since the baseline point is not knock 

limited, the efficiency gain can be 

pushed even further by allowing 

operation at a higher rel. knock level 

than baseline

GT-Power Results
Steam injection

Simulation Results

Load point: 2000 rpm / 11 bar

Engine
_______________________

Bore:                       
Stroke:                  
Cylinder.:                
Intake Valve Lift:    
Exhaust Valve Lift: 
Vse_in:                  
Vse_out:               
MBF50%:               
MBF10/90:            
Amb.Temp.:           
Steam mass:          
Puls duration:        

89 mm
88.3 mm
4
8.8 mm
9.0 mm
81°
90°
5.7°
17°
20 °C
105 mg/cycle
15 °CA

Relative steam mass 
relating to intake air = 20% 

re
l.
 K

n
o
c
k

In
te

g
ra

l 
[%

]

50

70

90

110

130

150
 Baseline   - Lambda = 1
 Steaminj.  - Lambda = 1

D
T

E
xh

  
[K

]

-120
-100

-80
-60
-40
-20

0

h
i  

[%
]

38
39
40
41
42
43

Injection Timing [Start/End °CA]

N
/A

-5
0
/-

3
5

-4
0
/-

2
5

-3
0
/-

1
5

-2
0
/-

5

-1
0
/5

0
/1

5

1
0
/2

5

2
0
/3

5

3
0
/4

5

4
0
/5

5

5
0
/6

5

+4.5%-points 

(~12% relative) 



© gofficient UG – all rights reserved|

10

10.5

11

11.5

12

12.5

Baseline Steam injection

Fuel consumption [L/100km]

Simulation results

WLTP takes full advantage of fast heat up and torque boost 
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ZYKLUSSIMULATION WLTP 

 The heat exchanger is able to 

extract a significant amount of 

energy from the exhaust gas

 After short heat up period (365s) 

the system is fully operational

 25.8L/100km water consump.

Cycle Simulation ResultsSteam injection

Simulation Results

WLTP Cycle
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Variable Compressor/Expander unit
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Variable Compressor/Expander unit

General Idea

 Use a piston based compressor for 

supercharging a combustion engine

 Directly coupled to the engine crankshaft

 The compressor can vary its mass flow

 A) By changing geometry

 B) By changing transmission ratio

 No leakage air occurs

Benefits

 Throttling of engine can be done by 

compressor geometry  No throttle valve 

necessary

 Load exchange work from engine is gained 

back at compressor, when operating with 

underpressure at part load

Kompressor/

Expander

Ladeluftkühler

Motor

Ansaugluft

Abgasaustritt
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Variable Compressor/Expander unit
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Ansaugöffnung

Druckseite

Schieber mit 

rückseitiger Verzahnung

Stellmotor

+ Zahnrad

Variable 

Compressor/Expander unit

Design example

Variant A) Variable geometry

Exhaust volume

of compressor unit almost

equal to cylinder displacement

Variable intake volume

- Smaller than exhaust for part load

- Larger for high load/full load

Schnitt A-A

A-A

Legende

Lamellen Flügelzelle

Gehäusematerial

Offener Strömungskanal

Bewegliches Stellelement

1

2

3

4

5
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Variable Compressor/Expander unit
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Variable Compressor/Expander unit

pV Diagram at different OP points shown right   

Overall efficiency increase compared to N/A engine 

shown below (much higher when comparing to turbo-

or supercharged  engine due to missing 

backpressure)

 Lower part load

 pV diagram shows big gain

at Compressor unit

 Middle load

 pV diagram ~neutral work

at Compressor unit

Benefit against 

Turbo (no backpressure)

and 

Supercharger (no losses)

 Full Load

 pV diagram comparable

to conv. Supercharger
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Combination of bsfc-opt specific approaches
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Which technologies should be combined ?

 Twin AV used potential of full expansion  no parasitic interaction with other methods

 Simplest and most effective method for Waste Heat Recovery is Steam Direct Injection

 Water Injection has minor additional benefit, however very low additional effort to above’s

config

With additional effort also reasonable

 2-stage turbocharging+supercharging, especially TwinAV + Compressor/Expander

Not reasonable for combination

 Miller cycling (competes with Twin AV)

 VCR (competes with water injection)



© gofficient UG – all rights reserved|

Combination of be-opt specific approaches
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Combination of Technologies

 Discussed Technologies can be combined 

with the effect of additive benefits

 Achievable specific fuel consumption with 

combination in optimum operation point

 185 g/kWh

(hges = 46%)

  Better than Diesel engines

State of the art  2016

 Still more potential possible by combination

with other principles

 Additional costs of proposed methods 

moderate, especially when compared to 

high degree of electrification
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