gofficient

Future CO₂ Emission Technologies

Technology Overview Presentation

FUTURE CO₂ EMISSION TECHNOLOGIES

Aachen, 18.05.2017 Dr. Ing. Andreas Gotter

Main Topics of presentation

- Background/Reason for Technology development
- Gofficient technology spectrum
- Examples
 - Thermodynamic Efficiency Improvement: Twin AV
 - Waste Heat Recovery: Steam Direct Injection
 - Reduction of Scavenging losses: Variable Compressor/Expander Unit
- Combination of Technologies

© gofficient UG - all rights reserved 3

CO₂ emission targets

Current part-load optimization technologies were sufficient to meet past requirements, but can never fulfill future requirements

- Vehicle specific Energy Demand (based on vehicle inertia and driving resistances) roundabout 0,12 - 0,18 kWh/km
- Engine specific Technology Year 2000: Mainly N/A engines, vehicle 0,144 kWh/km NEDC-averaged bsfc = 386 g/kWh → CO₂ = 172 g/km
- Technology Year 2015: Down-sized, Down-Speeded and Part-Load optimized Engines with Start/Stop, vehicle 0,138 kWh/km NEDC-averaged bsfc = 295 g/kWh → CO₂ = 126 g/km
- Target "2020" of 95 g/km will require an average bsfc of 222 g/kWh
 - → This requires better efficiency than most actual engine at optimum operation point!
 - → Not Reachable by part-load optimizations only

gofficient

China's target reflects gasoline vehicles only. The target may be higher after new energy vehicles are considered.
 US, Canada, and Mexico light-duty vehicles include light-commercial vehicles.
 Supporting data can be found at: http://www.theicct.org/info-tools/global-passenger-vehicle-standards

- Reduction of load-exchange losses comes to its boundaries
- All chances to optimize part-load efficiency have been explored within the last ~20 years
- New ideas need to be developed immediately to fulfil CO₂ targets
- \rightarrow What is to do ?
- Optimization of be-opt area necessary
- Less part load operation fraction, but combustion engine remains main drive with dynamic response demands

gofficient technology spectrum

- Cold start/ Instationary optimization
 - Reduced heat capacity
- Thermodynamic Efficiency Improvement
 - Increase of effective expansion ratio
 - VCR
 - Miller Cycle
 - Water injection
 - **Twin AV**

- Part Load Optimization
 - **Reduction of Scavenging losses**
 - Downspeeding
 - Dethrotteling by high EGR
 - Dethrotteling by lean combustion
 - Dethrotteling by Valvetrain
 - Downsizing (Reduction of Displacement)
 - Variable Compressor/Expander unit

- Waste Heat Recovery
 - Steam processes _

- Classic exhaust steam processes
- **Combined water/exhaust cycle**
- Steam direct injection

Main Topics of presentation

- Background/Reason for Technology development
- Gofficient technology spectrum
- Examples
 - Thermodynamic Efficiency Improvement: Twin AV
 - Waste Heat Recovery: Steam Direct Injection
 - Reduction of Scavenging losses: Variable Compressor/Expander Unit
- Combination of Technologies

Pushing a gasoline engine closer to Carnot

- Background/Reason for Technology development
- Increasing expansion
- Gain of Isochor/Isobar expansion triangle → TwinAV / Miller
- Using lower corner in T-s-diagram
 → Waste Heat Recovery
- Combination of Technologies

gofficient

Pushing a gasoline engine closer to Carnot

Background/Reason for Technology development

- Base thermodynamic efficiency of gasoline engine
- Efficiency of equal pressure process with fixed ε is $\eta_{\text{th}, v} = 1 \frac{1}{\varepsilon^{\kappa 1}}$
 - Typical ε is ~ 10.0 for TC engines and typical κ is ~ 1.28 for exhaust gas

Two approaches to use "lower triangle" exergy

Miller Cycle

- Increasing of geometric expansion by ~30%
- $\varepsilon_{\text{geo}} = \sim 13$; $\varepsilon_{\text{eff}} = \sim 10$
- $\rightarrow \eta_{\text{increase}} \sim 5\%$
- Drawback is more total displacement
- \rightarrow More relative friction, esp. at part-load
- \rightarrow Worse warm-up behaviour

Twin AV

- Expansion at turbine until upstream cat pressure
- Usage of ~60% of exhaust gas mass
- $\rightarrow \eta_{\text{increase}} \sim 7\%$
- Same engine displacement
- At high rpm (>5000) benefit reduces to ~0

- No wastegate Exhaust gas which is not used for turbocharging is bypassed at separate exhaust valve
 No exhaust backpressure at this LP exhaust valve
- Turbocharger has its own HP exhaust valve
- Small turbine with high typical pressure ratio can be applied

Twin AV

gofficient

Control concept Twin AV principle

- Boost control is driven by relative movement between exhaust valves
- Just one additional camphaser necessary

Twin AV

Basic concept Twin AV principle

gofficient

Key facts:

- Almost no statical backpressure
- "lost" exhaust mass fraction can be compensated by smaller turbine (higher turbine pressure level)
- Thermodynamically increasing effective expansion ratio
- Always positive scavenging pressure ratio → low knock retard
- Efficiency gain up to 7%

 Increased exhaust gas temperatures at turbine

- \rightarrow Good combination with
 - Integration exhaust manifold
 - Water injection

Twin AV

System Layout

- Smaller Turbine than conventional layout recommended
 - → Less mass flow, higher backpressure
 - \rightarrow Same or more power than "base" layout without TwinAV
- Combination with VTG could gain additional Turbo-Compound potential

Control concept Twin AV principle

- Different mechanical approaches for camphaser integration
- Combination with main intake and outlet phasing possible 3-way cam-phasing

Diagram shows typical conditions upstream turbine at 2000 rpm / higher part load

Main Topics of presentation

- Background/Reason for Technology development
- Gofficient technology spectrum
- Examples
 - Thermodynamic Efficiency Improvement: Twin AV
 - Waste Heat Recovery: Steam Direct Injection
 - Reduction of Scavenging losses: Variable Compressor/Expander Unit
- Combination of Technologies

Technology Overview: Steam Direct Injection

Motivation

- Waste heat (exhaust and coolant) contains ~50% of total fuel energy, which is more than the crankshaft power (at best efficiency operation)
- In part-load operation this is even more

Difficulties

- Waste Heat Regeneration cycles based on ORC or Clausius Rankine cycles are very expensive, relatively inefficient
- Additional costs and mass very high for vehicle application
- Instationary behaviour very bad, power control depending on heat up profile, typical delay time a few minutes

Solution

- No additional expansion unit, usage of combustion engine itself
- Dynamic behavior coupled to engine, System pressure coupled to exhaust energy

Concept Combination of known processes in a single expansion machine is key

STEAM CONDITIONING AND DIRECT INJECTION

- Exhaust heat exchanger generates high pressure steam
- Steam pressure depends on waste heat energy, delayed heat up due to thermal inertia
- Steam injections depend on operating point, however it shows fast control characteristics
- Power increase and efficiency gain due to steam expansion and combustion process
- Reduction of peak temperatures and exhaust gas temperature increase component protection

- Generation of superheated steam based on exhaust energy recuperation
- Steam Direct Injection at a window close to TDC depending on operating point and actual cylinder pressure, steam pressure up to 20-100 bar
- In comparison to fluid water injection, low temperature drop (no evaporation) \rightarrow increasing cyl. Pressure
- Increasing cylinder pressure due to increasing mass and by this IMEP increase of up to 15% more possible for short term (instationary)

Steam Direct Injection Key facts

gofficient

Key facts Steam direct injection

- Steam generation by Exhaust heat exchanger up to 20-100bar
- Steam Power available on demand
- No additional expansion device necessary, steam injection into main engine
- Part-efficiency of bottom cycle up to 15..20%
- Maximum Power gain (for limited time) up to 10kW
- Additional positive influency to base engine
 - Soot reduction by agglomeration and peak combustion temperature reduction
 - Component protection included due to lower exhaust gas temperatures

Key facts Turbo Steamer

- Steam generation by Exhaust heat exchanger up to 5-50bar
- Continous steam power generation, independent from usage
 → needs to be buffered
- Expansion device is turbine or cell expander, efficiency strongly dependent on OP point
- Cycle efficiency including pinch-effect 10..12%
- Electrical power generation of max. 2kW

Component design Rapid heat up vs. sufficient steam delivery rate

gofficient

HEAT EXCHANGER

Technical Design		Outlet working $Re = \frac{w \cdot d_{h}}{\nu}$ Housing
Max. static pressure @ Mass flux (exhaust) Max. Backpressure @ Mass flux (exhaust)	1330mbar @ 835 kg/h 230mbar @ 835 kg/h	Inlet exhaust gas
Alpha on the exhaust side	10-120 [W/m ² K]	
Alpha on the working fluid side	2.000-10.000 [W/m ² K]	$w = \frac{m}{\rho \cdot A_{\rm h}}$ Pipe bundles Cooling fins Isolation
Pipe Diameter (Inside/Outside)	8/12 mm	$\log(\alpha) \uparrow \qquad \qquad$
Nominal / Max. Pressure	100/120 bar	
Material	X5CrNi18-10 (V2A)	(3) Critical heat flux density Bulk boiling (2) (4) Film boiling (1) Convective boiling
Length/Width/Height	400/320/120 mm (15.4 L)	
Interior pipe volume	1.15 L	
Max. Steam delivery rate	30 g/s	
		$\log(T_w - T_s)$

Quelle : BMW - Betrieb eines Rankine-Prozesses zur Abgaswärmenutzung im PKW

INJECTOR

Max. rel. steam mass at $\Delta \alpha_{max}$ = 80°KW at operation with 100bar/311°C saturated steam

gofficient

Simulation results Taking full advantage of early steam injections is key to high gofficient efficiency

PART LOAD PERFORMANCE - 2000RPM 11BAR – 100BAR INJECTION

Injection Timing [Start/End °CA]

50/65

GT-Power Results $\langle \mathfrak{I} \rangle$

- Low rotational speed allows for short injection timing (15°CA)
- Load point stability enables pre p_{max} injections leading to higher efficiency
- Combustion peak temperature can be lowered significantly by 350 K
- Decreased exhaust temperature beneficial for component protection
- Since the baseline point is not knock limited, the efficiency gain can be pushed even further by allowing operation at a higher rel. knock level than baseline

Simulation results WLTP takes full advantage of fast heat up and torque boost *gofficient*

ZYKLUSSIMULATION WLTP

Cycle Simulation Results

 (\mathbf{O})

- The heat exchanger is able to extract a significant amount of energy from the exhaust gas
- After short heat up period (365s) the system is fully operational
- 25.8L/100km water consump.

Fuel consumption [L/100km]

Main Topics of presentation

- Background/Reason for Technology development
- Gofficient technology spectrum
- Examples
 - Thermodynamic Efficiency Improvement: Twin AV
 - Waste Heat Recovery: Steam Direct Injection
 - Reduction of Scavenging losses: Variable Compressor/Expander Unit
- Combination of Technologies

Variable Compressor/Expander unit

Variable Compressor/Expander unit

General Idea

- Use a piston based compressor for supercharging a combustion engine
- Directly coupled to the engine crankshaft
- The compressor can vary its mass flow
 - A) By changing geometry
 - B) By changing transmission ratio
- No leakage air occurs

Benefits

- Throttling of engine can be done by compressor geometry → No throttle valve necessary
- Load exchange work from engine is gained back at compressor, when operating with underpressure at part load

Variable Compressor/Expander unit

Variable Compressor/Expander unit

Design example

Variant A) Variable geometry

Exhaust volume of compressor unit almost equal to cylinder displacement

Variable intake volume

- Smaller than exhaust for part load
- Larger for high load/full load

Variable Compressor/Expander unit

pV Diagram at different OP points shown right ------

Overall efficiency increase compared to **N/A** engine shown below (much higher when comparing to turboor supercharged engine due to missing backpressure)

Lower part load

→ pV diagram shows big gain at Compressor unit

Middle load

 → pV diagram ~neutral work at Compressor unit Benefit against Turbo (no backpressure) and Supercharger (no losses)

Full Load

→ pV diagram comparable to conv. Supercharger

© gofficient UG – all rights reserved| 26

Main Topics of presentation

- Background/Reason for Technology development
- Gofficient technology spectrum
- Examples
 - Thermodynamic Efficiency Improvement: Twin AV
 - Waste Heat Recovery: Steam Direct Injection
 - Reduction of Scavenging losses: Variable Compressor/Expander Unit
- Combination of Technologies

Which technologies should be combined ?

- Twin AV used potential of full expansion \rightarrow no parasitic interaction with other methods
- Simplest and most effective method for Waste Heat Recovery is Steam Direct Injection
- Water Injection has minor additional benefit, however very low additional effort to above's config

With additional effort also reasonable

2-stage turbocharging+supercharging, especially TwinAV + Compressor/Expander

Not reasonable for combination

- Miller cycling (competes with Twin AV)
- VCR (competes with water injection)

Combination of Technologies

- Discussed Technologies can be combined with the effect of additive benefits
- Achievable specific fuel consumption with combination in optimum operation point

 → 185 g/kWh
 (η_{ges} = 46%)
- ➡ → Better than Diesel engines State of the art 2016
- Still more potential possible by combination with other principles
- Additional costs of proposed methods moderate, especially when compared to high degree of electrification

optimum bsfc